Exercise 14

Solve the initial-value problem.

$$
9 y^{\prime \prime}+y=3 x+e^{-x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Solution

This is a linear inhomogeneous ODE, so its general solution can be expressed as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
9 y_{c}^{\prime \prime}+y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into equation (1).

$$
9\left(r^{2} e^{r x}\right)+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
9 r^{2}+1=0
$$

Solve for r.

$$
\begin{gathered}
r^{2}=-\frac{1}{9} \\
r=\left\{-\frac{i}{3}, \frac{i}{3}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-i x / 3}$ and $e^{i x / 3}$. According to the principle of superposition, the general solution to equation (1) is a linear combination of these two.

$$
\begin{aligned}
y_{c} & =C_{1} e^{-i x / 3}+C_{2} e^{i x / 3} \\
& =C_{1}\left(\cos \frac{x}{3}-i \sin \frac{x}{3}\right)+C_{2}\left(\cos \frac{x}{3}+i \sin \frac{x}{3}\right) \\
& =\left(C_{1}+C_{2}\right) \cos \frac{x}{3}+\left(-i C_{1}+i C_{2}\right) \sin \frac{x}{3} \\
& =C_{3} \cos \frac{x}{3}+C_{4} \sin \frac{x}{3}
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
9 y_{p}^{\prime \prime}+y_{p}=3 x+e^{-x} \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is the sum of a polynomial of degree 1 and an exponential, the trial function is $y_{p}=(A x+B)+C e^{-x}$.

$$
y_{p}=A x+B+C e^{-x} \quad \rightarrow \quad y_{p}^{\prime}=A-C e^{-x} \quad \rightarrow \quad y_{p}^{\prime \prime}=C e^{-x}
$$

Substitute these formulas into equation (2).

$$
9\left(C e^{-x}\right)+\left(A x+B+C e^{-x}\right)=3 x+e^{-x}
$$

Simplify the left side.

$$
A x+B+10 C e^{-x}=3 x+e^{-x}
$$

Match the coefficients on both sides to get a system of equations for A, B, and C.

$$
\begin{aligned}
A & =3 \\
B & =0 \\
10 C & =1
\end{aligned}
$$

Solving it yields

$$
A=3 \quad \text { and } \quad B=0 \quad \text { and } \quad C=\frac{1}{10} .
$$

The particular solution is then

$$
\begin{aligned}
y_{p} & =(A x+B)+C e^{-x} \\
& =3 x+\frac{1}{10} e^{-x} .
\end{aligned}
$$

As a result, the general solution to the original ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{3} \cos \frac{x}{3}+C_{4} \sin \frac{x}{3}+3 x+\frac{1}{10} e^{-x} .
\end{aligned}
$$

Differentiate it with respect to x.

$$
y^{\prime}(x)=-\frac{C_{3}}{3} \sin \frac{x}{3}+\frac{C_{4}}{3} \cos \frac{x}{3}+3-\frac{1}{10} e^{-x}
$$

Apply the initial conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
y(0) & =C_{3}+\frac{1}{10}=1 \\
y^{\prime}(0) & =\frac{C_{4}}{3}+3-\frac{1}{10}=2
\end{aligned}
$$

Solving this system yields

$$
C_{3}=\frac{9}{10} \quad \text { and } \quad C_{4}=-\frac{27}{10} .
$$

Therefore,

$$
y(x)=\frac{9}{10} \cos \frac{x}{3}-\frac{27}{10} \sin \frac{x}{3}+3 x+\frac{1}{10} e^{-x} .
$$

Below is a plot of the solution versus x.

